Stay Connected

Follow ERS on Twitter
Subscribe to RSS feeds
Subscribe to ERS e-Newsletters.aspx
Listen to ERS podcasts
Read ERS blogs at USDA

Documentation and Methods

Methodology for Measuring International Agricultural Total Factor Productivity (TFP) Growth

The documentation and methods are organized in the following sections:


Improving agricultural productivity has been the world's primary means of assuring that the needs of a growing population don't outstrip the ability to supply food. Over the past 50 years, productivity growth in agriculture has allowed food to become more abundant and cheaper (see New Evidence Points to Robust But Uneven Productivity Growth in Global Agriculture, Amber Waves, September 2012). The most informative measure of agricultural productivity is total factor productivity (TFP). TFP takes into account all of the land, labor, capital, and material resources employed in farm production and compares them with the total amount of crop and livestock output. If total output is growing faster than total inputs, we call this an improvement in total factor productivity ("factor" = input). TFP differs from measures like crop yield per acre or agricultural value-added per worker because it takes into account a broader set of inputs used in production. TFP encompasses the average productivity of all of these inputs employed in the production of all crop and livestock commodities.

"Growth accounting" provides a practicable way of measuring changes in agricultural TFP over time given available data on agricultural outputs, inputs, and their prices. The approach described here gives internationally consistent and comparable agricultural TFP growth rates, but not TFP levels. Most of the data on production and input quantities used in this analysis comes from FAOSTAT database of the United Nations Food and Agriculture Organization (FAO). In some cases FAO input and output data are supplemented with data from national statistical sources. The methodology and data are also fully described in Fuglie (2012, 2015).

How These Estimates Differ From Other ERS Productivity Accounts for the United States

To facilitate international comparisons in ERS’ International Agricultural Productivity (IAP) data product, certain simplifying assumptions must be made. As such, the estimates of TFP growth reported here may not be exactly the same as TFP growth estimates reported in other studies using different assumptions or methods. In particular, the TFP estimates reported here for the United States differ from those reported in ERS' Agricultural Productivity in the U.S. data product. The principal differences are (i) the Agricultural Productivity in the U.S. data use prices received by U.S. farmers to measure output growth, whereas a common set of global average agricultural prices are used in ERS’ IAP data product; (ii) in Agricultural Productivity in the U.S., agricultural labor is quality-adjusted by skill level, whereas there is insufficient data for such quality adjustments in ERS’ IAP data product; (iii) the Agricultural Productivity in the U.S. accounts use a perpetual inventory method to measure farm capital stock (i.e., current capital stock is a function of past capital expenditures, appropriately discounted for depreciation), whereas the current inventory method (based on the number of major pieces of machinery in-use on farms) is used in ERS’ IAP data product; and (iv) the Agricultural Productivity in the U.S. accounts for a more comprehensive set of material inputs (i.e., quality-adjusted pesticides and contract services), whereas these data are not broadly available for inclusion in the ERS’ IAP data product. Generally, the TFP index reported in the Agricultural Productivity in the U.S. data product should provide a more accurate measure of the rate of technical change in U.S. agriculture. However, the International Agricultural Productivity data series reported here are better suited for making comparisons of agricultural TFP growth between the United States and a wide range of other countries.


Total factor productivity (TFP) is defined as the ratio of total output to total inputs. Let total output be given by Y and total inputs by X. Then TFP is simply:



It is often difficult to provide meaningful definitions of real output or real input due to the heterogeneity of outputs produced and inputs used. However, it is possible to provide meaningful definitions of output growth and input growth between any two periods of time using index number theory (Caves, Christensen and Diewert, 1982). Changes in TFP over time are found by comparing the rate of change in total output with the rate of change in total input. Expressed as logarithms, changes in equation (1) over time can be written as

Equation 2


which simply states that the rate of change in TFP is the difference between the rate of change in aggregate output and input. 

Agriculture is a multi-output, multi-input production process, so Y and X are vectors. When the underlying technology is represented by a constant-returns-to-scale Cobb-Douglas production function, producers maximize profits so that the output elasticity with respect to an input equals the cost share of that input, and markets are in long-run competitive equilibrium so that total revenue equal total cost, then equation (2) can be written as

Equation 3


where Ri is the revenue share of the ith output and Sj is the cost-share of the jth input. Total output growth is estimated by summing over the growth rates for each output commodity weighted by its revenue share. Similarly, total input growth is found by summing the growth rate of each input, weighted by its cost share. TFP growth in Eq. (3) is thus the value-share-weighted difference between total output growth and total input growth.

One difference among growth accounting methods is whether the revenue and cost share weights are fixed or vary over time. Paasche and Laspeyres indexes use fixed weights whereas the Tornqvist-Thiel and other chained indexes use variable weights. Allowing the weights to vary reduces potential "index number bias." Index number bias arises when producers substitute among outputs and inputs depending on their relative profitability or cost. In other words, the growth rates in Yi and Xj are not independent of changes Ri and Sj. For example, if labor wages rise relative to the cost of capital, producers are likely to substitute more capital for labor, thereby reducing the growth rate in labor and increasing it for capital. In agriculture, cost shares of agricultural capital and material inputs tend to rise in the process of economic development while the cost share of labor tends to fall.

To reduce potential index number bias in TFP growth estimates, cost shares are varied by decade whenever such information is available. For outputs, base year prices (or equivalently, base year revenue shares) are fixed, since these depend on FAO’s measure of constant, gross agricultural output (described in more detail below in the Output section). The base period for output prices is 2004-06.

Direct estimates of cost shares were assembled for 22 countries from 16 studies. These 22 countries account for about two-thirds of world agricultural output. For another set of countries where input prices are not available or market-determined, (Sub-Saharan Africa and transition economies of the former Soviet Union and Eastern Europe), three studies provide econometric estimates of production elasticities, which were used in place of cost shares. These regions account for another 8 percent of world agricultural output. For remaining countries, representing about 25 percent of world agricultural output, cost shares are approximated by applying cost shares from a "like" country. The section below on Input Cost Shares provides details on the data sources and assumptions.

The framework outlined above provides a simple means of decomposing the relative contribution of TFP and inputs to the growth in output. Using the function g(.) to signify the annual rate of growth in a variable, the growth in output is simply the growth in TFP plus the growth rates of the inputs times their respective cost shares: 

equation 4


Equation (4) is a cost decomposition of output growth since each Sjg(Xj) term gives the growth in cost from using more of the jth input to increase output. It is also possible to focus on a particular input, say land (which we designate as X1), and decompose growth into the component due to expansion in this resource and the yield of this resource:

equation 5


This decomposition corresponds to what is commonly referred to as extensification (land expansion) and intensification (land yield growth). We can further decompose yield growth into the share due to TFP and the share due to using other inputs more intensively per unit of land:

Equation 6


Equation (6) is a resource decomposition of growth since it focuses on the quantity change of a physical resource (land) rather than its contribution to changes in cost of production. 

Below is a graphical depiction of the growth decomposition described in equation (6). The height of the bars indicate the growth rate of real output. Growth in real output is first decomposed into growth attributable to agricultural land expansion (extensification) and growth attributable to raising yield per hectare (intensification). Finally, yield growth itself is decomposed into input intensification (i.e., more capital, labor and fertilizer per hectare of land), and TFP growth, where TFP reflects the efficiency with which all inputs are transformed into outputs. Improvements in TFP are driven by technological change, improved technical and allocative efficiency in resource use, and scale economies. The decomposition of output growth into these components is both intuitively appealing and has direct policy relevance: land expansion and input intensification are strongly influenced by changes in resource endowments and relative prices, whereas TFP growth is strongly influenced by long-term investments in agricultural research and extension services, education, and infrastructure, and improved resource quality and institutions. 

Figure 1. Agricultural Growth Comes From Increasing the Use of Land and Other Resources and/or From Raising the Productivity of those Resources
Download higher resolution chart (1200 pixels by 960 pixels, 200 dpi)



FAO’s 1961-2012 annual time series of crop and livestock commodity outputs and land, labor, livestock, farm machinery, inorganic fertilizers and animal feed inputs are the primary data used to construct the national, regional and global quantity measures. In some cases these are modified or supplemented with data from other sources (such as national statistical agencies) when they are considered to be more accurate or up-to-date, as described below.


For agricultural output, FAO publishes estimates of annual production of 198 crop and livestock commodities by country since 1961. FAO also aggregates production into a measure of gross agricultural output using a common set of global average commodity prices from 2004-06 and expresses this in constant 2005 international dollars. FAO excludes production of animal forages but includes crop production that is used for animal feed and seed in estimating gross agricultural output. The FAO also provides a measure of output net of domestic production used for feed and seed. However, the net production measure does not exclude imported grain that may be used as feed or seed, or grain that is exported and used in another country for these purposes. 

Because current (or near current) prices are fixed to aggregate quantities and measure changes in real output over time, the FAO gross agricultural output is equivalent to a Paasche quantity index. The set of common commodity prices is derived using the Geary-Khamis method. This method determines an international price pi for each commodity which is defined as an international weighted average of prices of the i-th commodity in different countries, after national prices have been converted into a common currency using a purchasing power parity (PPPj) conversion rate for each j-th country. The weights are the quantities produced by the country. The computational scheme involves solving a system of simultaneous linear equations that derives both the pi prices and PPPj conversion factors for each commodity and country. The FAO updates these prices every five years and recalculates its index of gross production value back to 1961 using its most recent set of international prices. See Rao (1993) for a thorough description and assessment of these procedures. 

The FAO value of gross agricultural output in constant 2005 international dollars is the basis for a consistent measure of output for each country and the world. However, due to the influence of weather and other factors, agricultural production is volatile from year to year, and it can be difficult to disentangle short-run fluctuations from long-term trends. To relieve the data of some of these fluctuations, the output series are smoothed for each country using the Hodrick-Prescott filter (setting λ=6.25 as recommended for annual data by Ravn and Uhlig, 2002). Even with smoothing there is still considerable curvature in the output series, although much of the year-to-year fluctuation in output has been removed from the data. The smoothed series provides a better indicator of productivity trends.


Inputs are divided into six categories: farm labor, agricultural land, two forms of capital inputs (farm machinery and livestock), and two types of intermediate inputs (inorganic fertilizers and animal feed). The primary source of information is FAO, which published annual estimates beginning in 1961 (and for farm labor beginning in 1980) for each country, except for former Soviet Socialist Republics (SSRs) for which data begin in 1992. The time series for each SSR are extended back to 1980 using data from Shend (1993) and further to 1965 using data from Lerman et al. (2003).

Farm labor is the total number of adults (males and females) who are economically active in agriculture. FAO currently publishes farm labor estimates and projections for each country of the world from 1980 to 2020, although previously FAO also published estimates for 1961-79. FAO estimates are used for each country except China, Nigeria, and transition economies (former Soviet Union and Eastern Europe). Labor data for 1961-80 are estimated using the agricultural labor force growth rates derived from the 2006 version of FAO labor force statistics which include estimates from 1961 onward. For China, agricultural labor estimates are from the Statistical Yearbooks of the National Bureau of Statistics of China. For Nigeria, labor force estimates are from Fuglie and Rada (2013), who determined that FAO farm labor force estimates for this country were grossly undercounted. To derive more plausible estimates, Fuglie and Rada (2013) used FAO data (2006 version) for 1961-66 and then extrapolated them to the present assuming a 2 percent annual growth rate. For transition economies, national agricultural statistical sources are used, as reported in EUROSTAT for the Baltic countries and Eastern Europe, CISSTAT for Russia, Belorussia and Moldova, the International Labor Organization’s LABORSTA for Ukraine, and the Asian Development Bank for Asiatic former Soviet republics. Pre-1992 labor estimates for these countries are from Shend (1980) and Lerman et al. (2003).

Agricultural land is the area in permanent crops (perennials), annual crops, and permanent pasture. Cropland (permanent and annual crops) is further divided into rainfed area and area equipped for irrigation. The areas of rainfed cropland, irrigated area, and permanent pasture are then aggregated into a quality-adjusted measure that gives greater weight to irrigated cropland and less weight to permanent pasture to account for relative land productivity (see the next section on Land Quality). However, for agricultural cropland in Sub-Saharan Africa total area harvested for all crops is used rather than the FAO cropland series (Fuglie and Rada, 2013). For China we use sown crop area (National Bureau of Statistics of China) for cropland, given unreasonable discontinuities in the cropland series of both the FAO and Chinese government sources (Fan and Zhang, 2002). For New Zealand, FAO cropland series prior to 2002 fails to reflect changes in a consistent definition over time. We therefore use the area in grain, seed, fodder, and horticultural crops from Statistics New Zealand (2003) for 1961-2001, and FAO data from 2002 onward. For similar reasons, cropland in Indonesia prior to 1990 is based on national agricultural statistics as reported in Fuglie (2010).

Farm machinery is the total metric horse-power (CV) of major farm equipment in use. It is the aggregation of the number of 4-wheel riding tractors, 2-wheel pedestrian tractors, power harvester-threshers, and milking machines, expressed in "40-CV tractor-equivalents." The average CV per machine is assumed to be 40 CV per 4-wheel tractor, 12 CV per 2-wheel tractor, 20 CV per power harvester-thresher, and 1 CV per milking machine. However, due to insufficient information no adjustment is made for differences across countries or over time in farm machinery sizes within these categories, except for China, which reports farm machinery inventories in power units (National Statistical Bureau of China). Also, for Indonesia, the FAO figure for the number of power thresher-harvesters in use includes both pedal and power threshing machines. We include only power thresher-harvesters from Indonesian national statistics, as reported in Fuglie (2010).

The FAO reports continuous time series data for 4-wheel tractors, harvest-threshers and milking machines, but not 2-wheel walking tractors. For many developing countries, particularly in Asia, 2-wheel tractors have been a major component of farm mechanization. For 2-wheel tractors, FAO reports numbers in use for 1970s but then discontinued this series until recommencing it in 2002. For interim years, national farm machinery statistics were collected on 2-wheel tractors in use from the agricultural censuses of China, Japan, South Korea, Taiwan, Thailand, Philippines, Indonesia, Indian, Bangladesh, Pakistan, and Sri Lanka, and interpolated between census years. These countries constitute most of the global use of 2-wheel tractors in use on farms.

Presently, FAO farm machinery statistics only extend to 2009 (and for many countries they may not extend past 2005). To extend estimates of farm machinery to 2012, national statistics on the number of tractors and combine-harvested from more recent years were collected for a number of countries: Bangladesh (Hassan, 2013), China (National Statistical Bureau of China, 2014), Europe (Eurostat), India (Singh et al., 2015), Japan (Ministry of Agriculture, Forestry and Fisheries, 2012), Russia (Russian Federation Federal State Statistics Service, 2015), and the United States (National Agricultural Statistical Service, 2014). For remaining missing data, farm machinery stocks were extrapolated using the average growth rate from the three most recent years of available data.

Livestock Capital is the aggregate value of animals used for breeding, milking, egg laying, wool production, and to provide animal traction. To approximate livestock capital, total inventories of animals on farms, measured in "cattle equivalents" are used. Inventories include dairy cows, other cattle, water buffalo, camels, horses, other equine species (asses, mules, and hinnies), small ruminants (sheep and goats), pigs, and poultry species (chickens, ducks, and turkeys), with each species weighted by its relative size. The weights for aggregation are based on Hayami and Ruttan (1985, p. 450): 1.38 for camels, 1.25 for water buffalo, dairy cows and horses, 1.00 for other cattle and other equine species, 0.25 for pigs, 0.13 for small ruminants, and 12.50 per 1,000 head of poultry.

Fertilizer is the amount of major inorganic nutrients applied to agricultural land annually, measured as metric tons of N, P2O5, and K2O nutrients. The source of the data is the International Fertilizer Association, except for small countries, which is from FAO.

Animal Feed is the total amount of crop (except fodder), animal, and fish products used for feed, measured in metric tons of dry-matter (DM) equivalents. Data on commodities used for animal feed are from the FAO Commodity Balance Sheets. Parameters for the DM for each type of feed are from the National Research Council (1982).

Other Inputs. While these six inputs account for the major part of total agricultural input usage, there are a few types of inputs for which complete country-level data are lacking, namely, use of chemical pesticides, seed, veterinary pharmaceuticals, energy, and services from farm structures. However, more detailed input data are available from several of the national studies from which input cost shares are derived (see section below on Input Cost Shares). To account for these inputs, we assume that their growth rate is correlated with one of the six input variables just described and include their cost with the related input. For instance, services from capital in farm structures as well as irrigation fees are included with the agricultural land cost share; the cost of chemical pesticide and seed is included with the fertilizer cost share; costs of veterinary medicines are included in the animal feed cost share, and energy costs are included in the farm machinery cost share. So long as the growth rates of the observed input and its unobserved counterparts are similar, then the model captures the growth of the unobserved inputs in the aggregate input index.

Land Quality

The FAO agricultural database provides time-series estimates of agricultural land by country and categorizes this as either permanent pasture or cropland (which is further divided in arable and permanent crop land). It also provides an estimate of area equipped for irrigation. The productive capacity of land among these categories and across countries can be very different, however. For example, some countries count vast expanses of semi-arid lands as permanent pastures even though these areas produce very limited agricultural output. Using such data for international comparisons of agricultural productivity can lead to serious distortions, such as significantly biasing downward the econometric estimates of the production elasticity of agricultural land (Peterson, 1987).

To account for the contributions to growth from different land types, irrigated cropland, rain-fed cropland, and permanent pastures are converted into "rainfed cropland equivalents" based on their relative productivity. Productivity weights vary regionally. In order not to confound the land quality weights with productivity change itself, the weights are estimated using country-level data from the beginning of the period of study (i.e., using average annual data from 1961-65). Let Regioni be a set of indicator variables representing five global regions (i=1,2,…5). For each country, Regioni takes a value of either 1 if the country is in the region and zero otherwise. Regions as (1) developed and former Soviet bloc countries, (2) Asia-Pacific, (3) Latin America and the Caribbean, (4) West Asia and North Africa, and (5) Sub-Saharan Africa. Define agricultural yield as total output Y divided by the sum of cropland and pasture area. We then regress agricultural yield against the proportions of agricultural land in rain-fed cropland (Rainfed), irrigated cropland (Irrig), and permanent pasture (Pasture). Multiplying the land-use proportions by the regional indicator variables allows the coefficients to vary among regions:

 Equation 7


The coefficient vectors α, β and γ provide the quality weights for aggregating the three land types into an aggregate land input index. Countries with a higher proportion of irrigated land are likely to have higher average land productivity, as will countries with more cropland relative to pasture. The estimates of the parameters in equation (7) reflect these differences and provide a ready means of weighting the relative qualities of these land classes.

The regression estimates show that, on average, one hectare of irrigated land was between 1.1 to 3.0 times as productive as rainfed cropland, which in turn was 10-20 times as productive as permanent pasture. The results give plausible weights for aggregating agricultural land across broad quality classes. The approach to account for land quality differences among countries is similar to one developed by Peterson (1987), who derived land quality weights by regressing average cropland values in U.S. states against the share of irrigated and unirrigated cropland and long-run average rainfall. He then applied these regression coefficients to data from other countries to derive an international land quality index. The advantage of the present model is that it is based on international rather than U.S. land yield data and provides results for a larger set of countries.

This adjustment for changes in different classes of land allows us to further refine the resource decomposition of output growth in equation (6) to isolate the contribution of irrigation apart from expansion in agricultural area to output growth. Letting X1 be the quality-adjusted quantity of land (and for simplicity, dropping the Region subscripts on the land quality parameters), then a change in X1 is given by

equation 8


The first two right-hand-side terms indicate the expansion in land area (with growth in pasture area adjusted for quality to put it in comparable terms with cropland expansion). The third term isolates the contribution of irrigation expansion:(γ-α)*100% gives the percent augmentation to yield, holding other factors fixed, from equipping a hectare of cropland with supplemental irrigation. Dividing equation (8) by X1 converts the expression into percentage changes so that it shows the respective contributions of changes in rainfed cropland, pasture area and irrigation to output growth. Combined with equation (6), the resource decomposition expression shows the contributions to agricultural growth from expansion of agricultural land, extension of irrigation, intensification of other inputs per hectare, and improvements in TFP: 

equation 9


where θc,θp,and θw are the shares of quality-adjusted agricultural land in crops (X1c), pasture (X1p), and irrigated area (X1w), respectively (note:X1=X1c+X1p+ X1w). The first two terms [θcαg(X1c)+θpβg(X1p)] give the share of output growth attributable to land expansion (holding yield fixed), while the third term [θw(γ-α)g(X1w)] indicates the share of output growth due to the extension of irrigation (holding other inputs fixed). The fourth term of equation (9) gives the contribution to growth of input intensification and the last term the contribution of growth in total factor productivity.

Input Cost Shares

The FAO (and supplementary) quantity data allow us to calculate the growth rates for six categories of production inputs (land, labor, machinery capital, livestock capital, and material inputs represented by fertilizer and feed), but to combine these into an aggregate input measure requires information on their cost shares or production elasticities. For this we draw upon 19 studies that have estimated nationally or regionally representative cost shares or production elasticities for agricultural inputs (see the Excel Spreadsheets for a list of these studies and the cost shares derived from them). These costs shares are assumed to be representative of not only those nations but also for other countries in the same region. For instance, the cost shares from India were applied to other countries in South Asia, the cost shares for Indonesia were applied to other countries in Southeast Asia and the Pacific, the cost shares for Mexico were assigned to other countries in Central America and the Caribbean, and the cost shares for Brazil were applied to other countries in South America as well as the North Africa-West Asia region. These assignments were based on judgments about the resemblance among the agricultural sectors of these countries. Countries assigned to the cost shares from Brazil tended to be middle-income countries having relatively large livestock sectors, for example. For agricultural capital, some of these studies only reported an aggregate cost share for all capital services. To partition capital services into machinery and livestock capital services, the average proportions of capital stock in machinery, livestock and tree capital for low, middle and high income countries reported in Butzer, Mundlak and Larson (2012) are used. The cost share of capital services from trees is assigned to land. 

While the lack of direct observations on input cost shares for most countries introduces uncertainty in the TFP estimation, the countries for which cost shares are observed represent about 65 percent of the global agricultural economy. This proportion rises to three-fourths when Sub-Saharan Africa and the former Soviet Union are included – regions where econometrically-estimated production elasticities are used in place of cost shares. Thus, countries to which input cost shares were imputed represent only one-quarter of world agricultural output. Another argument in support of this approach is that there is a significant degree of congruence among the cost shares reported for these country studies. For the developing countries for which cost shares data are available (India, Indonesia, China, Brazil and Mexico), farm-supplied inputs (land, labor, and livestock capital) account for between 60 and 90 percent of total costs, while inputs supplied by industry (machinery, or fixed capital, and purchased materials such as fertilizers and processed animal feed), accounted for a far smaller share of resources. The cost share of inputs supplied by industry rises with the income of a country, and accounts for a third or more of total costs in the more highly industrialized countries. The use of modern inputs in transition countries, on the other hand, fell sharply after reforms were initiated in the early 1990s. These patterns of input use is reflected in cost shares estimated or imputed for these countries.

Country and Regional Productivity

Using the methodology and data described above agricultural TFP indexes are estimated for nearly every country of the world on an annual basis beginning in 1961 (and since 1965 for the independent states of the former Soviet Union). However, some countries have dissolved or are too small to have complete data.  For the purpose of estimating long-run productivity trends, some national data are aggregated to create consistent political units over time. For example, data from the nations that formerly constituted Yugoslavia are added together to make comparisons with productivity before Yugoslavia’s dissolution. Similarly, data were aggregated for Czechoslovakia, Ethiopia and the former Soviet Union (TFP series for individual SSR’s begin in 1965). Because some small island nations have incomplete or zero values for some agricultural data, three composite territories were constructed by adding up available data for island states in the Lesser Antilles, Micronesia, and Polynesia. Altogether, the countries included in the analysis account for more than 99.7 percent of FAO’s global gross agricultural output. The only areas not included in the analysis that have significant agricultural production are the West Bank and Gaza.

In addition to individual countries, data are aggregated and TFP indexes estimated at the regional level. Input and output quantity aggregation is straight forward since they are all measured in the same units (although not adjusted for quality differences in the inputs). Regional cost shares are the weighted averages of the national cost shares for the countries in a region.

Table 1—Countries and regional groupings included in the productivity analysis
Sub-Saharan Africa (SSA)
Central African Republic
Republic of the Congo
Democratic Republic of the Congo
Equatorial Guinea
Sao Tome & Principe
Burkina Faso
Cape Verde
Côte d’Ivoire
Sierra Leone
Latin America & Caribbean (LAC) North America Africa, developed
French Guiana


Southern Cone
Central America
Costa Rica
El Salvador
Dominican Republic
Lesser Antillesa
Puerto Rico
Trinidad & Tobago
United States
South Africa
Asia West Asia & North Africa
Korea Republic
Taiwan (China)
NE Asia, Developing
Korea, DPR

South Asia
Sri Lanka
SE Asia
Brunei Dar.
Viet Nam
New Caledonia
Papua New Guinea
Solomon Islands
West Asia
Saudi Arabia

North Africa
Europe Former Soviet Union Oceania
United Kingdom
Eastern Europe Transition
East Europe
Russia Fed.
Central Asia & Caucasia
New Zealand
a Composite countries composed of several small island nations.
b Statistics from the successor states of Ethiopia (Ethiopia and Eritrea), Czechoslovakia (Czech and Slovak Republics), and Yugoslavia (Slovenia, Croatia, Bosnia, Macedonia, Serbia, and Montenegro) were merged to form continuous time series from 1961 to 2012.

Excel Spreadsheets

The provided spreadsheets contain the 1961-2012 annual agricultural TFP indexes, as well the input and output data used in their construction. See the "Explanation" tab in each workbook for a detailed description of the content. The structure of all three files is identical.

Summary Findings

Figure 2 is the empirical counterpart to Figure 1—it decomposes global agricultural growth (measured by the height of the bars, in average annual percent growth) into growth due to land and irrigation expansion, input intensification, and TFP. It shows that output growth was slowing in the 1970s and 1980s but then accelerated in the 1990s and 2000s. In the latest period (2001-12), global output of total crop and livestock commodities was expanding at an average rate of 2.52 percent per year.

Figure 2. TFP Has Replaced Resource Intensification as the Primary Source of Growth in World Agricultural Output. 
Chart data
Download higher resolution chart (2085 pixels by 1667 pixels, 300 dpi)

The different colors of the bars show how much of this growth came from bringing new resources into production (new land, extension of irrigation, and input intensification per acre) and how much came about by raising the TFP of these resources. In the decades prior to 1990, most output growth came about from intensification of input use (i.e., using more labor, capital, and material inputs per acre of agricultural land). Bringing new land into agriculture production and extending irrigation to existing agricultural land were also important sources of growth. Over the last two decades, however, the rate of growth in agricultural resources (land, labor, capital, etc.) has significantly slowed. What has allowed agricultural output to continue to grow despite this slowdown in agricultural resources is productivity—getting more output from existing resources. During 2001-12, improvements in TFP accounted for about two-thirds of the total growth in agricultural output worldwide. The global average TFP growth rate during this period was 1.68 percent per year. This TFP reflects the use of new technology and changes in management by agricultural producers around the world.

While productivity has been the major source of agricultural growth in developed countries for at least the past half-century, the acceleration of global TFP growth since 1990 came about because of better productivity performance in developing countries and, to some extent, in the transition economies of the former Soviet Union and Eastern Europe. Strengthening the capacity of national agricultural research and extension systems in developing countries has been a key element of this process (Evenson and Fuglie, 2010). Long-term investments in agricultural research were especially important to sustaining higher agricultural TFP growth rates in large, rapidly developing countries such as Brazil (Rada and Valdes, 2012) and India (Rada and Schimmelpfennig, 2015). Chinese agricultural benefitted enormously from institutional and economic reforms as well as technological changes resulting from investments in research (Fan, 1991; Lin, 1992; Jin et al., 2002). Under-investment in agricultural research remains an important barrier to stimulating agricultural productivity growth in Sub-Saharan Africa (Fuglie and Rada, 2013).

Table 2. Productivity is the Prime Driver of Agricultural Growth in All Global Regions Except Sub-Saharan Africa.
Table 2—Change in global agricultural output, inputs, and total factor productivity, by region, 2001-12
Global regionAgricultural outputTotal factor productivityAll inputsLandLaborMachinery capitalLivestock capitalFertilizersAnimal feed
  Average annual growth over 2001-12 (percent per year)
Developed countries










  North America




















Developing countries










  Asia (except W. Asia)










  Latin America










  West Asia & North Africa










  Sub-Saharan Africa










Transition economies




















Source: USDA, Economic Research Service, International Agricultural Productivity data product, October 2015.

Update and Revision History

Indexes for international agricultural total factor production were first published on the ERS website in November 2013, and covered the period from 1961 to 2010. In October 2014, an updated version was posted covering 1961-2011. The third update was posted in October 2015 and covered 1961-2012. With each new posting, historical estimates are revised to reflect newly available data and/or modifications to the estimation procedures. This section briefly describes the updates to the international agricultural TFP indexes.

The data for agricultural outputs and inputs come primarily from the Food and Agriculture Organization (FAO). Other datasets accessed for each update include EUROSTAT, the National Statistical Bureau of China, Asian Development Bank, LABORSTA of the International Labor Organization, and IFADATA from the International Fertilizer Association. The updated TFP estimates use the latest available data from these sources. In addition to updating data for more recent years, these sources sometimes revise data from previous years to reflect more complete information on these series. The updated ERS International Agricultural Productivity database include these revisions to previous years’ data from these sources.

In addition to updating data from other sources, various changes may be introduced in the way data are organized and combined into the TFP series. The following details these changes.

1. The October 2014 and subsequent updates reassign Pacific island states from the Oceania Region to the Southeast Asia Region (now referred to as Southeast Asia and Pacific).

2. As FAO reports farm machinery stocks through no later than 2009 (and for some countries the series ends even earlier), various methods are used to extrapolate farm machinery stocks into the future. The original 2013 version simply assumed the same level of machinery stocks in 2010 as in 2009 or the last year for which estimates were available. The October 2014 update revised method for extrapolating estimates of machinery stocks by assuming they grew at the same rate as the ratio of agricultural land to farm workers. This procedure is designed to reflect machinery-labor substitution taking place in some countries as labor leaves the agricultural sector. For the October 2015 update an effort was made to collect new data from national statistical sources on actual machinery stocks. More recent (than FAO) statistics were collected for Bangladesh, China, Europe, India, Japan, Russia, and the United States (see Data section above for a listing of sources). The countries account for more than 70 percent of farm machinery stocks globally. For missing data, farm machinery stocks were extrapolated using the average growth rate from the three most recent years of available data.

3. The October 2015 international productivity database update includes an explicit measure of animal feed used as an input into agricultural livestock production. The 2013 and 2014 versions of the database assumed that animal feed grew at the same rate of the size of the global livestock herd (measured in cattle-equivalent units). The 2015 update derives actual quantities of animal feed from FAO Commodity Balance Sheets, which provide annual data from 1961 to 2011 (except for former Soviet Socialist Republics (SSRs), for which data are available from 1992 to 2011). Feed quantity is the sum of all crops, crop processing residues (like oilseed meals, sugar, molasses, and bran from flour and grain milling), animal and fish products (including meat, fish, fish meals and whey) in metric tons of dry matter. The dry matter content of each feed type is from the "United States-Canadian Tables of Feed Composition: Nutritional Data for United States and Canadian Feeds, Third Edition," National Research Council, National Academies Press (1982). Dry matter is calculated on the basis of 89 percent dry matter for grain, which is the standard dry matter content of marketed grain. For SSRs prior to 1992, total USSR feed use is apportioned amongst them according to the proportion of total USSR livestock (in cattle-equivalents) in each SSR. Animal feed inputs are extrapolated to 2012 for each country using the average growing rate in animal feed from the previous three years in that country.

4. The October 2015 international productivity database update corrected an error in FAO data on agricultural land in New Zealand prior to 2002. The agricultural land series for New Zealand for 1961-2002 are derived from Statistics New Zealand (2003).

References (includes references listed in text above and in the data spreadsheets)

Asian Development Bank. Statistical Database System. Asian Development Bank, Manila, The Philippines. Accessed 16 March 2015.

Ball, V.E. (1985). "Output, Input and Productivity Measurement in U.S. Agriculture, 1948-79." American Journal of Agricultural Economics 67: 475-486.

Ball, V.E., Bureau, J-C, Nehring, R., and Somwaru, A. (1997). "Agricultural Productivity Revisited." American Journal of Agricultural Economics 79:1045-63.

Ball, V.E., Butault, J., Mesonada, C. and Mora, R. (2010). "Productivity and International Competitiveness of Agriculture in the European Union and the United States." Agricultural Economics 41: 611-627.

Butzer, R., Mundak, Y. and Larson, D. (2012). "Measures of Fixed Capital in Agriculture." In Fuglie K., Wang, S.L. and Ball, V.E. (eds.) Productivity Growth in Agriculture: An International Perspective. Wallingford, UK: CAB International, pp. 313-34.

Cahill, S., and Rich, T. (2012). "A Production Account for Canadian Agriculture, 1961-2006." In Fuglie K., Wang, S.L. and Ball, V.E. (eds.) Productivity Growth in Agriculture: An International Perspective. Wallingford, UK: CAB International, pp. 33-72.

Caves, D., Christensen, L., and Diewert, W. E. (1982). "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity." Econometrica 50:1393-1414.

CISSTAT. CIS CD-ROM. Official Statistics of the Countries of the Commonwealth of Independent States Moscow: Interstate Statistical Committee of the Commonwealth of Independent States.

Cungu, A. and Swinnen, J. (2003). "Transition and Total Factor Productivity in Agriculture, 1992-1999." Working Paper 2003/2. Leuven, Belgium: Research Group on Food Policy, Transition and Development, Katholieke Universiteit.

EUROSTAT. Database, Statistics, Employment and Unemployment (LFS). European Commission. Accessed 3 March 2015.

Evenson, R., and Fuglie, K. (2010). "Technology Capital: The Price of Admission to the Growth Club." Journal of Productivity Analysis 33: 173-190.

Evenson, R., Pray, C. and Rosegrant, M. (1999). Agricultural Research and Productivity Growth in India. Research Report Number 109. Washington, DC: International Food Policy Research Institute.

Fan, S. (1991). "Effects of Technological Change and Institutional Reform on Production Growth in Chinese Agriculture." American Journal of Agricultural Economics 73:266-275.

Fan, S. and Zhang, X. (2002). "Production and Productivity Growth in Chinese Agriculture: New National and Regional Measures." Economic Development and Cultural Change 50: 819-38.

FAO. FAOSTAT Database. Rome: Food and Agriculture Organization of the United Nations. Accessed 15 June 2015.

Fernandez-Cornejo, J. and Shumway, C. (1997). "Research and Productivity in Mexican Agriculture." American Journal of Agricultural Economics 79: 738-753.

Fuglie, K. (2010). "Sources of Growth in Indonesian Agriculture." Journal of Productivity Analysis 33: 225-240.

Fuglie, K. (2011). "Agricultural Productivity in Sub-Saharan Africa." In Lee, D.L. and Ndulo, M.B., The Food and Financial Crises in Sub-Saharan Africa: Origins, Impacts and Policy Implications. Wallingford, UK: CAB International, 122-153.

Fuglie, K. (2012). "Productivity Growth and Technology Capital in the Global Agricultural Economy." In Productivity Growth in Agriculture: An International Perspective (K. Fuglie, S.L. Wang and V. E. Ball, eds.) CAB International, Wallingford, UK, pp. 335-368.

Fuglie, K., and Rada, N. (2013). Resources, Policy and Agricultural Productivity in Sub-Saharan Africa. Economic Research Report 145, Economic Research Service, U.S. Department of Agriculture, Washington, DC, February.

Fuglie, K. (2015). "Accounting for Growth in Global Agriculture." Bio-based and Applied Economics 4 (December): forthcoming.

Hayami, Y. and Ruttan, V.W. (1985). Agricultural Development: An International Perspective. 2nd edn. Johns Hopkins University Press, Baltimore, MD.

Hayami, Y., Ruttan, V.W. and Southworth, H. (eds.) (1979). Agricultural Growth in Japan, Taiwan, Korea and the Philippines. Honolulu: University Press of Hawaii.

Hassan, M.S. (2013). "Present Status, Prospects and Challenges of Farm Mechanization in Bangladesh." Beijing, China: UN ESCAP Centre for Sustainable Agricultural Mechanization.

International Fertilizer Association. IFADATA. Washington, DC: International Fertilizer Association (IFA). Accessed 30 March 2015.

Jin, S., Huang, J., Hu, R., Rozelle, S. (2002). "The Creation and Spread of Technology and Total Factor Productivity in China’s Agriculture." American Journal of Agricultural Economics 84: 916-930.

Kwon, O.S. (2010). "Agricultural R&D and Total Factor Productivity of Korean Agriculture." Korean Journal of Agricultural Economics 51:67-88 (in Korean).

LABORSTA. Database, Bureau of Statistics. Geneva: International Labour Organization. Accessed 6 April 2015.

Lerman, Z., Kislev, Y., Biton, D. and Kriss, A. (2003). "Agricultural Output and Productivity in the Former Soviet Republics." Economic Development and Cultural Change 51: 999-1018.

Lin, J. (1992). Rural reform and agricultural growth in China. American Economic Review 82: 34-51.

Ministry of Agriculture, Forestry and Fisheries (2012). Main Indicators Relating to Agriculture, Forestry and Fisheries. Tokyo: Ministry of Agriculture, Forestry and Fisheries.

National Agricultural Statistical Service (2014). 2012 Census of Agriculture. Washington, DC: U.S. Department of Agriculture, Washington, DC.

National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press. Accessed 27 April 2015.

National Research Council (1982). United States-Canadian Tables of Feed Composition: Nutritional Data for United States and Canadian Feeds, Third Revision. Washington, DC: National Academy Press.

Peterson, W. (1987). "International Land Quality Indexes." Staff Paper P87-10, Department of Applied Economics, University of Minnesota, St. Paul, April.

Rada, N., and Valdes, C. (2012). Policy, Technology and Efficiency of Brazilian Agriculture. Economic Research Report 137, Economic Research Service, U.S. Department of Agriculture, Washington, DC, July.

Rada, N. (2013). "Agricultural Growth in India: Examining the Post-Green Revolution Transition." Paper presented at the Annual Conference of the Agricultural and Applied Economics Association, August 4-6, 2013, Washington, DC.

Rada, N. and Schimmelpfennig, D. (2015). Propellers of Agricultural Productivity in India. Economic Research Report, Economic Research Service, U.S. Department of Agriculture, Washington, DC, October (forthcoming).

Rao, D.S.P. (1993). "Intercountry Comparisons of Agricultural Output and Productivity." FAO Economic and Social Development Paper, United Nations Food and Agriculture Organization, Rome.

Ravn, M. and Uhlig, H. (2002). "On Adjusting the Hodrick-Prescott Filter for the Frequency of Observations." Review of Economics and Statistics 84:371-376.

Russian Federation Federal State Statistics Service (2015). Russia in Figures. Moscow: Russian Federation Federal State Statistics Service.

Schimmelpfennig, D., Thirtle, C., van Zyl, J., Arnade, C. and Khatri, Y. (2000). "Short and Long-Run Returns to Agricultural R&D in South Africa, or Will the Real Rate of Return Please Stand Up?" Agricultural Economics 23: 1-15.

Shend, J. (1993). Agricultural Statistics of the Former USSR Republics and the Baltic States. Statistical Bulletin No. 863, Economic Research Service, U.S. Department of Agriculture, Washington, DC.

Singh, R.S., Singh, Surendra, Singh, S.P. (2015). "Farm Power and Machinery Availability on Indian Farms." Agricultural Engineering Today 39:45-56.

Statistics New Zealand (2003). Agricultural Statistics 2002. Wellington: Statistics New Zealand.

Thirtle, C., Piesse, J. and Schimmelpfennig, D. (2008). "Modeling the Length and Shape of the R&D Lag: An Application to UK Agricultural Productivity." Agricultural Economics 39: 73-85.

Van der Meer, C. and Yamada, S. (1990). Japanese Agriculture: A Comparative Economic Analysis. London: Routledge.

Zhao, S. Sheng, Y. and Gray, E. (2012). "Productivity of the Australian Broadacre and Dairy Industries: Concept, Methodology and Data." In Fuglie K., Wang, S.L. and Ball, V.E. (eds.) Productivity Growth in Agriculture: An International Perspective. Wallingford, UK: CAB, pp. 73-108.

Last updated: Friday, October 16, 2015

For more information contact: Keith Fuglie and Nicholas Rada