Figure 1
Per capita U.S. nonalcoholic beverage consumption, 1992-2002
Gallons per year

Source: Economic Research Service, USDA.

Figure 2
Comparison of nonalcoholic beverage consumption data

	Total U.S. consumption (ERS/USDA)	Consumption at home (ACNielsen)	Nonalcoholic beverage consumption at home
------- Gallons/person---------		Percent	
Soft drinks	50.8	20.2	39.8
Milk	23.6	13.2	55.9
Bottled water	18.1	5.6	30.9
Fruit juices	9.6	7.9	82.3
Coffee	25.7	16.8	65.4
Tea	8.4	5.8	69.0

Source: ERS analysis of ACNielsen Homescan data, ERS data.

Figure 3
Average caloric, calcium, vitamin C, and caffeine availability from all nonalcoholic beverages, by ethnicity*

Available intake per person per day

[^0]Figure 4
Average caloric, calcium, vitamin C, and caffeine availability from all nonalcoholic beverages, by region*

Available intake per person per day

Figure 5
Average caloric, calcium, vitamin C, and caffeine availability from all nonalcoholic beverages, by race*

* See definitions of abbreviations in table 2 footnotes for all figures.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 6
Average caloric, calcium, vitamin C, and caffeine availability from all nonalcoholic beverages, by poverty status*
Available intake per person per day

[^1]Figure 7
Average caloric, calcium, vitamin C, and caffeine availability from all nonalcoholic beverages, by education of female head of household*

[^2]Figure 8
Average caloric, calcium, vitamin C, and caffeine availability from all nonalcoholic beverages, by employment of the female head*

[^3]Figure 9
Average caloric, calcium, vitamin C, and caffeine availability from all nonalcoholic beverages, by age of the female head*

[^4]Figure 10
Average caloric, calcium, vitamin C, and caffeine availability from all nonalcoholic beverages, by household size*

Available intake per person per day

[^5]Figure 11a
Average caloric, calcium, vitamin C, and caffeine availability from all nonalcoholic beverages, by presence of children*

Figure 11b
Average caloric, calcium, vitamin C, and caffeine availability from all nonalcoholic beverages, by presence of children*

[^6]Figure 12
Marginal effects for ready-to-drink fruit juices not frozen, by education of household head

Note: The base category for this figure is a household head with less than a high school education. Households heads with more educaton than high school are more likely to purchase ready-to-drink (RTD) fruit juices.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 13
Marginal effects for ready-to-drink fruit juices not frozen, by race

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 14

Marginal effects for ready-to-drink fruit juices not frozen, by region

Change in probability

Note: The base category for this figure is the East region. Households located in regions other than East are less likely to purchase a ready-to-drink (RTD) fruit juice.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 15
Marginal effects for ready-to-drink fruit drink, by age of household head
Change in probability

Note: The base category for this figure is a household head less than 25 years of age. Households heads older than 25 are less likely to purchase a ready-to-drink fruit drink.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 16
Marginal effects for ready-to-drink fruit drinks, by race
Change in probability

Note: The base category for this figure is White. Households other than Whites are more likely to purchase a ready-to-drink fruit drink.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 17

Marginal effects for tea, by age of household head

Change in probability

Note: The base category for this figure is a household head less than 25 years of age. Households with heads between 25 and 39 years old are are less likely to purchase tea. Households with heads older than 39 years old are more likely to purchase tea.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 18

Marginal effects for tea, by region

Note: The base category for this figure is the East region. Households located in regions other than the East are less likely to purchase tea.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 19
Marginal effects for coffee, by employment of household head
Change in probability

0		
-0.01	Part-time	
-0.02		Full-time
-0.03		
-0.04		
-0.05		

Note: The base category for this figure is a household head who is not employed. Households with employed heads are less likely to purchase coffee.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 20

Marginal effects for coffee, by education of household head

Change in probability

Note: The base category for this figure is a household head with less than a high-school education. Household heads with more education than high school are less likely to purchase coffee for at-home consumption.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 21

Marginal effects for isotonics, by age of household head

Change in probability

Note: The base category for this figure is a household head less than 25 years old. Households with heads between 25 and 40 years old are more likely to purchase isotonics. Households with heads ages 50 and older are less likely to purchase isotonics.

Source: Economic Research Service, USDA, analysis of ACNielsen HomeSscan data.

Figure 22

Marginal effects for isotonics, by race

Change in probability

Note: The base category for this figure is White. Other (non-White, non-Black, non-Asian) households are more likely to purchase isotonics than Whites, while Black and Asian households are less likely to purchase isotonics than White households are.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 23

Marginal effects for powdered soft drinks, by race

Change in probability

Note: The base category for this figure is White. Black households are more likely to purchase powdered soft drinks than White households are. Asians are less likely to purchase powdered soft drinks than Whites.
Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 24

Marginal effects for powdered soft drinks, by region

Change in probability

Note: The base category for this figure is the East region. Households in the Central and South regions are more likely to pruchase powdered soft drinks. Households located in the West are less likely to purchase powdered soft drinks, compared with households located in the East.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 25

Marginal effects for carbonated soft drinks, by age of household head

Change in probability

Note: The base category for this figure is a household head less than 25 years of age.
Households heads aged 25-64 are more likely to purchase carbonated soft drinks.
Households heads older than 64 are less likesly to purchase carbonated soft drinks.
Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 26

Marginal effects for carbonated soft drinks, by race

Change in probability

Note: The base category for this figure is White. Black households are more likely to purchase carbonated soft drinks than Whites, while Asian and Other races are less likely to do so.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 27

Marginal effects for bottled water, by race

Note: The base category for this figure is White. Black, Asian, and Other households are more likelty to purchase bottled water than White households.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 28

Marginal effects for bottled water, by region

Change in probability

Note: The base category for this figure is the East region. Households located in the Central region are less likely to purchase bottled water, while households located in the West region are more likely to purchase bottled water.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 29
Marginal effects for flavored milk, by age of household head

Note: The base category for this figure is a household head less than 25 years of age.
Households heads older than 49 are less likely to purchase flavored milk.
Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 30

Marginal effects for flavored milk, by region

Change in probability

Note: The base category for this figure is the East region. Households located in the Central and South regions are more likely to purchase flavored milk. Households located in the West are less likely to purchase flavored milk compared with the East.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 31

Marginal effects for unflavored milk, by household size

Note: The base category for this figure is a household of one. Households with more than one household member are more likely to purchase unflavored milk.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 32
Marginal effects for unflavored milk, by age of household head
Change in probability

Note: The base category for this figure is a household head less then 25 years of age. Household heads older than 25 are much less likely to purchase unflavored milk.

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 33
Average purchases (consumption) of selected nonalcoholic beverages, by poverty status

Gallons/household/year

[^7]Figure 34
Average purchases (consumption) of selected nonalcoholic beverages, by household size

[^8]Figure 35
Average purchases (consumption) of selected nonalcoholic beverages, by age of female head of household

Gallons/household/year

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 36
Average purchases (consumption) of selected nonalcoholic beverages, by employment of female head of household

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 37
Average purchases (consumption) of selected nonalcoholic beverages, by education of female head of household

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 38
Average purchases (consumption) of selected nonalcoholic beverages, by race

Gallons/household/year

[^9]Figure 39
Average purchases (consumption) of selected nonalcoholic beverages, by region

Gallons/household/year

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 40
Average purchases (consumption) of selected nonalcoholic beverages, by ethnicity

Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

Figure 41
Average purchases (consumption) of selected nonalcoholic beverages, by calendar quarters

[^10]
[^0]: * See definitions of abbreviations in table 2 footnotes for all figures.

 Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

[^1]: * See definitions of abbreviations in table 2 footnotes for all figures.

 Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

[^2]: * See definitions of abbreviations in table 2 footnotes for all figures.

 Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

[^3]: * See definitions of abbreviations in table 2 footnotes for all figures.

 Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

[^4]: * See definitions of abbreviations in table 2 footnotes for all figures.

 Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

[^5]: * See definitions of abbreviations in table 2 footnotes for all figures.

 Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

[^6]: *See definitions of abbreviations in table 2 footnotes for all figures.
 Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

[^7]: Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

[^8]: Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

[^9]: Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

[^10]: Source: Economic Research Service, USDA, analysis of ACNielsen Homescan data.

