
2.  Stationary versus Cointegrated Regressions Models 

In this paper the relationship between FSP caseloads and the macro-economy is analyzed 
based on evidence that these data follow unit-root processes. To understand how the approach 
with unit-root processes differs from the one used in previous FSP caseload studies it is 
necessary to review some fundamentals of cointegration econometrics by comparing them with a 
more familiar regression theory.   

 
Previous studies have measured the relative importance of policy and economic variables 

on FSP or AFDC/TANF caseloads by regressing caseloads on a vector of economic and policy 
variables.   All these studies use methods that are correctly applied to stationary regression 
models in which the model is formed from variables that follow stationary time series.   In this 
section, stationary regression models are compared to integrated regression models.  Integrated 
regressions are regression models constructed from variables that follow unit root time series. 6 
The fundamental difference between a stationary and a unit root series is the response of the 
series to a transitory shock in a single period.   Differences in regression methods, predictive 
reliability, and most importantly for the purposes of this paper, coefficient interpretation can all 
be traced to this difference. 

 
This section proceeds in three parts.  First, a brief overview of the difference between 

stationary and cointegration regression models is presented.  A more formal discussion of 
difference between stationary versus integrated data and between regression analyses with 
stationary versus integrated data follows. Finally, unique features of estimating cointegated 
regression models using panel data are discussed. 
 
2.1 Overview  
 

Suppose initially that the time series of food stamp caseloads can be described as a trend 
stationary (or stationary) process.  Following a transitory shock in the present period food stamp 
caseloads first deviate from, and then return to their original time trend (to their mean if 
stationary).  The transitory shock imparts a short-run effect on the series in the sense that FSP 
caseloads returns to the same path they would have followed had the stock not occurred.  If 
economic and policy variables are also trend stationary, each would display the same temporary 
deviation from their time trends. Because past deviations from these trends have been temporary, 
the future paths of these variables are predictable. This means that a regression of food stamp 
caseloads on economic and policy variables yields stable estimates and that these estimates 
describe a short-run relationship between deviations of food stamp caseload and economic and 
policy variables from their time trends.  

 
The sequence of events is different if the FSP caseload data are drawn from unit root 

processes. In this case a transitory shock to one of these variables forever alters the future path of 
its series and so imparts a long-run or permanent effect on the time series.  Past responses do not 

                                                 
6 There are a number of different classes of integrated time series and in this paper we follow the convention that an 
integrated series is taken to mean an integrated series of order 1 or equivalently, that the time series contains a single 
unit root. This section draws heavily on Chapters 15-19 of Hamilton for the discussion of unit root nonstationary 
series and cointegration.  
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‘trace out’ a stable path; instead, any time trend would be stochastic and future paths cannot be 
reliably predicted from past patterns.  
 

Even though the individual unit-root data series are each non-stationary it is possible that 
a linear combination of these variables is stationary and thus predictable.  Such a linear 
combination defines a cointegrated relationship between the variables, and explains how the 
individual data series move together in a way that can be reliably predicted from past realizations 
of their stationary combination. In this sense, a cointegrating regression among FSP caseloads, 
economy, and policy variables describes a stable long-run (equilibrium) relationship between 
permanent movement in the FSP caseloads and permanent movements in the economic and 
policy variables.   

 
 If no such linear combination exists, the estimated OLS relationship among the variables 
would be spurious and the linear combination defined by the OLS coefficients would behave like 
a non-stationary time series and yield unreliable predictions.  Tests of cointegration are, 
therefore, tests of the existence of long-run equilibrium relationships, and can be interpreted as 
tests of model specification. It is this aspect of cointegration analysis that is emphasized in this 
paper.  In particular, our specification tests find evidence that estimates of the FSP caseload 
equation that do not include a measure of AFDC/TANF caseloads are incomplete and do not 
define a long-run stable relationship.   
 
 
2.2 Derivation of Results 

 
This comparison will first look at differences in the time series properties of a single 

(univariate) random variable generated by a stationary versus a unit root process.  The section 
then addresses how these properties affect stationary versus integrated regressions.    

 
For a given a random variable, xt, let the process or time series be denoted as {xt}. 

Stationary time series have well-defined first and second moments that make them relatively 
easy to predict. For example suppose that an economy or policy random variable, xt, follows an 
auto-regressive process of order 1 (i.e., AR(1)) and so that it satisfies   

  
    xt = c + ρ xt-1 + εt      

 
where εt is a serially uncorrelated or transitory shock with Var(εt ) =σ2 for all t, and where |ρ|<1.  
The condition |ρ|<1 represents the absolute summability condition for a stationary AR(1) time 
series. Let E denote the mathematical expectations operator, then the mean of this process is 
E({xt}) ≡ µ = c/(1- ρ), its variance is Var({xt}) ≡ γo =σ2/(1-ρ2), and its jth auto-covariance, γj,  is 
σ2[ρj /(1-ρ2)]. In this stationary AR(1) example, finite unconditional moments of the process are 
independent of t and the covariance of variables separated by longer time periods decays (i.e., γj 
→ 0) as the distance between the variables grows larger (i.e., j → ∞). It is the summability 
condition that ensures the existence of finite moments and is responsible for the type of decay 
exhibited by stationary time series. As discussed below it also has important implications for 
prediction.  
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A more general representation of a stationary process satisfies    
 

(1)   xt = µ +  εt  + ρ1  εt-1  + ρ2  εt-2  + ρ3  εt-3 + . . .  
 
where E({xt}) = µ, and where ∑i=0

∞|ρi| < ∞ is the absolute summability condition. Besides 
ensuring finite moments, absolute summability also ensures that as a forecast horizon grows, the 
forecast converges to µ, the unconditional mean of the series. That is if ∑i=0

∞|ρi| < ∞, then 
E(xt+s|xt, xt-1, . . . ) →  E({xt}) =  µ as s → ∞.   
 

The problem with (1) is it does not generate the type of trends that are commonly 
observed in economic data. One possibility that does generate typical patterns is a trend-
stationary series 

 
(2)   xt = µ + δt +  εt  + ρ1  εt-1  + ρ2  εt-2  + ρ3  εt-3 + . . .  
 
In this case absolute summability (∑i=0

∞|ρi| < ∞) ensures that forecasts of xt+s, given by E(xt+s | 
xt, xt-1, . . .) converge (in mean square) to the time trend µ+ δ(t+s) and the mean-squared error 
(MSE) of the forecast converges to the bounded unconditional variance of the series (i.e.,) as s → 
∞. That is, MSE ≡ E[xt+s  - E(xt+s | xt, xt-1, . . . )] 2 → Var {(xt}) = σ2 [1 + ρ1   + ρ2+ ρ3  + . . .] as s 
→  ∞ and the added uncertainty of forecasting further into the future becomes negligible.    
 
 Another way to generate trends commonly observed with economic data is through a unit 
root non-stationary series. The first difference of a unit-root series is a stationary series but the 
series itself is not. This means the first-differenced series satisfies absolute summability but the 
level series does not. Violating absolute summability not only means finite moments do not exist, 
it also has dramatic consequences for prediction.  
 

A unit root series that allows for trends satisfies   
 

(3)  xt – xt-1  = (1-L) xt  = δ + εt  + ρ1  εt-1  + ρ2  εt-2  + ρ3  εt-3 + . . .  
 
where the symbol L denotes the lag operator, which transforms xt into xt-1 upon multiplication.  
Note that (3) is similar to (1) except that (1-L) xt replaces xt, and the drift term, δ, replaces the 
unconditional mean µ. It can be shown (e.g., see Hamilton, Chapter 15) that the s-step-ahead 
forecast of a series that follows (3) is 
 

E(xt+s | xt, xt-1, . . . ) = s δ +  xt + T(εt , εt-1 , εt-2 , …)  
 
where T is some function of current and past realizations of {εt}. Even in the case in which the 
function T equals zero (i.e., a random walk with drift) the above relationship indicates that an s-
step ahead forecast is a random variable that grows at a constant rate (δ) from the current 
realization of xt. This means that over time the prediction of xt+s changes as new values xt+1

, 
 xt+2, . 

.  are realized. It can also be shown that the MSE associated with such a prediction grows linearly 
with the forecast horizon (Hamilton, Chapter 15). 
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The above discussion suggests stationary series are much easier to predict than unit root 
series.  For a trend stationary process the forecast of xt+s

 converges to the value µ+ δ(t+s).  On 
the other hand, for a random walk with drift process, the forecast of xt+s

  does not converge to a 
single value but constantly changes as future values of the series are realized.  This means that it 
is virtually impossible to accurately predict the future values of a unit root series.  

 
Differences in the time series characteristics of stationary and integrated data affect the 

properties of linear regression. Let yt represents food stamp caseloads, xt is represents a k-vector 
of policy and economic variables, β a corresponding vector of true parameters and ut a model 
error.  (A variable in bold indicates a vector.)  Write a regression model relating food stamp 
caseloads to policy and economic variables as,  

 
(4)    yt = xt’β+ ut
 
Conditional on current values of economy and policy regressors equation (4) can be viewed as 
providing a prediction of current food stamp caseloads.  Given the general unreliability of 
forecasts of integrated series, a central question is whether yt can be reliably predicted from xt if 
yt and xt follow unit root processes. 
  

Given the regression framework by (4) three separate cases are considered.  First suppose 
that the {[yt  xt’]} are jointly covariance stationary.  Any linear combination of these series forms 
a stationary series. Hence the model errors   

 
[yt  xt’] [1 -β]’ ≡ ut   

 
would be stationary.  Suppose E(ut| xt’) = 0 and suppose ut is a serially uncorrelated process with 
a constant and finite variance σ2for all t.7  Denote bT as the vector of OLS estimates of β based 
on T observations, so the model residuals, ut

* = [yt  xt’] [1 - bT]’ and the residual sum of squares 
is RSST = ∑t=1

T(ut
*)2.  Then OLS estimation yields the following well- known results: bT is a 

consistent estimate of β, s2 = (1/T-k) RSST is a consistent estimate of σ2, and as T →∞,  bT is 
approximately distributed multivariate normal with mean β and variance σ2[∑t =1

T(xt
 xt’)]-1. Thus 

if observations on [yt  xt’]  (t=1,…, T) are drawn from jointly stationary or trend-stationary 
processes, standard OLS yields consistent estimates of β and the usual t and F tests yield valid 
inference. Furthermore, these results do not change if one or more of the elements of xt’ are 
deterministic time trends. In short, if {[yt  xt’]} are jointly covariance stationary, (4) provides a 
stable prediction of food-stamp caseloads, and this prediction can be estimated consistently and 
efficiently using OLS. These are the standard type of results that are used by previous FSP 
caseload studies.   
 

Now consider the second case in which {[yt  xt’]} is a vector of unit root non-stationary 
processes. In this case the model is   

 

                                                 
7 For serially correlated ut one can appeal to a GLS transformation that achieves serially uncorrelated errors.  
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(4a)     yt = xt’β + ut
 
(5)     xt = δ + xt-1+ vt.  
 
where (4a) is an integrated regression, and the data generating process of the regressor variables 
has been written out explicitly in (5) with error vector vt consisting of stationary terms.  The 
properties of (4a) depend crucially on the properties of the model errors. 
 

It might be expected that a linear combination of unit-root non-stationary processes 
would be a unit root non-stationary process. Specifically {[yt  xt’] [1 -β]’} ≡ {ut} would be a unit 
root non-stationary process and (4a) would represent an integrated regression with integrated 
model errors. The above discussion on univariate time series states that the prediction of unit root 
variables is both unstable and uncertain. The relevance of that discussion for regression analysis 
derives from the view that the OLS residual  

 
(6)     ut

* = [yt  xt’] [1 - bT]’   
 
represents a prediction of the model error based on values of [yt  xt’]. Recall from above that bT 
denotes the OLS estimate of β based on T observations. The above discussion on the prediction 
of univariate unit root process indicates that the predictor ut

* varies even as the sample size 
becomes infinitely large. From (6) this means that even in large samples bT continues to vary  
and fails to converge to β. The MSE calculated from the predicted residuals, s2 = (1/(T-k)) RSST 
= (1/T-k) ∑t=1

T(ut
*)2 grows at the rate T2 .  This divergence of the RSST  means that F-statistics 

calculated from the OLS residuals grow at the rate T.  As the sample size grows, F tests would be 
more likely to reject the null that xt has no relationship with yt even though bT remains unstable 
in large samples. Phillips (1986) was the first to formally show that these properties indeed 
represent the hallmark of integrated regressions with integrated model errors. Integrated 
regressions with integrated model errors are called spurious regressions.  
 
 Finally, consider the third case; the case of an integrated regression with stationary model 
errors. The above discussion of the prediction of univariate stationary time series suggests that in 
this case the model residuals, [yt xt’] [1   - bT] converges to [yt xt’] [1   -β] as the sample size 
increases which suggests bT converges to β. Integrated regressions with a stationary model error 
are called cointegrated regressions.  
 

It is important to note that in the case of cointegrated regressions, the consistency of bT 
does not depend on econometric exogeneity.  That is, with cointegrated regressions OLS is 
consistent even when Cov (ut,vt) ≠ 0, i.e., the error terms in (4a) and (5) are correlated.  To see 
this, note that 
  
bT =[∑t=1

T (xt  xt’)] -1 [∑t=1
T xt yt]= [∑t=1

T (xt  xt’)] -1 [∑ t=1
T xt (xt’β + ut )] 

 
     = β + [∑t=1

T (xt  xt’)] -1 ∑t=1
T (xt ut). 

 
The bias term, [∑t=1

T (xt  xt’)] -1 ∑t=1
T (xt ut), is the sum of the product of a unit root vector of 

variables and a stationary variable (i.e., ∑t=1
T (xt ut) ) divided by the sum of squares of a unit root 
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vector of variables (i.e., ∑t=1
T (xt  xt’)). It can be shown that in the special case of a cointegrated 

regression ∑t=1
T (xt ut) grows at the rate T and ∑t=1

T (xt  xt’) grows at rate T2. Because the 
denominator of the bias term grows at a rate in time greater than the numerator, the bias term 
converges (in law) to zero and OLS estimates converge to β.   
 

In the context of the present study the above result means that if food stamp caseloads 
and the policy and economy variables in xt are cointegrated, then OLS would provide consistent 
estimates of the cointegrating vector [1  -β] even though economic and policy variables may not 
be econometrically exogenous. Moreover this regression would represent a long-run relationship 
in the sense that the cointegrating vector [1  -β] relates permanent changes in food stamp 
caseloads to permanent changes in the economic and policy variables.  

 
To illustrate the nature of the long-run relationship described by the cointegrated 

regression (4a), consider a single element of the integrated vector xt which is a unit root process 
without drift.  According to (3), this element satisfies 

   
(3a)    xt – xt-1 = ut     
 
where ut = δ + εt  + ρ1  εt-1  + ρ2  εt-2  + ρ3  εt-3 +. . .  . Repeated substitution gives 
  
   xt = xo + u1 + u2 + u3 + . . . +  ut  
 
so the change to xt from xo is the sum of serially correlated events. Note the realization of u in 
period 1 affects every realization of {xt} drawn in any future time period (t>1) in exactly the 
same way.  The Beveridge-Nelson decomposition shows that (3a) can be expressed as 
 
(7)   xt = xo + ρ(1) (ε1 + ε2 + ε3 +  . . . + εt) + ηt - ηo    
 
where ε is a serially uncorrelated or transitory shock, ηt is a stationary process, xo and  ηo  are  
initial conditions, ρ(1) = ∑k=0

∞(ρk ), and ρ(1) (ε1 +  ε2  + ε3  +  . . . + εt) represents a random 
walk.8 The permanent or long run component of an integrated time series is described by the 
random walk component of a unit root series. This random walk component shows that a purely 
transitory event that occurs in say, the first period (ε1), imparts a permanent effect on all future 
realizations of the random variables xt , xt+1 , xt+2, . . . in exactly the same manner. Furthermore, 
for unit root series without drift, it is only this permanent component that matters when 
characterizing the distribution of a unit root time series (Hamilton, Ch. 17).    
 

Hence if food stamp caseloads {yt} is an integrated process (without drift) and if {xt} is 
comprised of integrated policy and economy variables (without drift), and if {[yt  xt]} are 
cointegrated with cointegrating vector [1  -β] then if the permanent component or long run 
component of xt is  

 
 (ε1 + ε2  + ε3  +  . . . + εt)’ ρ(1)   

 

                                                 
8 More precisely it is the product of a constant and a random walk. 
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the long run component of {yt} can be represented as  
 

(ε1 + ε2  + ε3  +  . . . + εt)’ ρ(1) β. 
 

Therefore the cointegrated food stamp caseload regression links through the coefficient vector β 
the long-run components of economic and policy variables to the long-run component of food 
stamp caseloads.   
 

If a food stamp caseload regression is a cointegrated regression, the long-run components 
of unit-root economic and policy variables dominates the distribution of food stamp caseloads. It 
even affects the short-run fluctuations or stationary component of caseloads. To see this, write 
the period-by-period change in FSP caseloads in an error-correction form.  This form can be 
obtained by substitute (5) into (4a) and subtract yt-1 from both sides.     

 
(8)    ∆yt = (xt-1’β - yt-1 ) +  ∆xt ‘β + ut        
  
where ‘∆’ is the first difference operator (i.e., ∆yt = yt - yt-1).  Equation (8) shows that period-by-
period changes in food stamp caseloads can be expressed in terms of the cointegrating vector and 
lagged levels of integrated food stamp caseloads and economic and policy variables (the error-
correction term) and period-by-period changes in the economic and policy variables. Equation 
(8) shows that a simple first-difference representation of (4a), although stationary, is 
misspecified since it does not include the error-correction term and thus severs the link between 
short-run dynamics and the long-run relationship.  
 

Even though OLS yields consistent estimates of β, the usual t and F hypothesis tests 
associated with estimating (4a) yield correct inference only under the stringent condition of 
econometric exogeneity.  Strict econometric exogeneity is achieved in (4a) and (5) when 
Cov(ut ,vt) =  0, however in general, one should expect that this condition will be violated. Phillip 
and Hanson (1990) have developed a fully modified (FM) estimator that corrects for the effects 
of this correlation.  FM estimation involves a transformation the data.   The usual t and F tests 
calculated from OLS estimates applied to the transformed data results in asymptotically valid 
tests of β.  Park’s (1992) Canonical Cointegrating Regressions (CCR) estimator used in this 
paper is also a fully modified estimator.  
 

In order to determine whether an integrated regression model is described by second case 
(spurious regression) or by the third case (cointegrated regression) tests of cointegration are 
conducted.  All cointegration tests are based on whether regression residuals behave like a 
stationary or a unit-root nonstationary process.  One approach to testing for cointegration is to 
check whether the model residuals behave like a unit root process. This approach tests the null 
hypothesis that the relationship is not cointegrated.  In this case one applies the Dickey-Fuller 
(1981) or augmented Dickey Fuller tests (for residuals) or the tests described by Phillips and 
Ouliaris (1990).  Rejecting the null of integrated model residuals rejects the null that the 
integrated regression is spurious. A problem with these residual tests is their low power, which 
owes to the fact that residuals must be estimated before they can be tested (Dickey, Jansen, and 
Thornton, 1991).  Another approach to testing for cointegration is to test the null hypothesis that 
the regression is cointegrated using a procedure developed by Park (1990).  His variable addition 
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test exploits the fact that under the null of cointegration the stationary model error tests are 
uncorrelated with additional integrated variables or deterministic time trends.  In this case, an F-
test (on transformed regression variables) will fail to reject the null of zero coefficients 
associated with additional integrated regressors. That is, under the null of cointegration, the 
additional integrated regressors are superfluous and an F-test will imply that coefficients of the 
added variables are zero. Under the alternative, the model residuals are unit-root non-stationary 
and the F-test rejects the null of zero coefficients.  

 
In this paper, cointegration is tested using variable addition tests.  This approach to 

testing cointegration is taken because we believe that there exists a long-run relationship between 
the FSP and AFDC/TANF caseloads and the economy and look for evidence to refute this belief.   
Given this belief, variable addition tests provide an advantage over residual tests.  The low 
power of residual based tests of the null of unit-root nonstationary, like the augmented Dickey-
Fuller test, means that these tests are not good at detecting relationships that are, in fact, 
cointegrated.  A second advantage of variable additions test is that they are based on 
standardized distributions.  This avoids complications associated with relying on non-standard 
testing procedures that are not currently well developed for testing residual from regressions of 
panel data. 

 
We use tests of cointegration as tests of model specification.  If a regression model is 

found to be spurious, this is interpreted to imply that the specification is misspecified.  One way 
this could happen would be if too few integrated regressors were included in the model.  For 
example, if there were a cointegrating relationship between FSP caseloads, the economy, and 
AFDC/TANF caseloads but an FSP caseload equation was estimated that included only economy 
regressors then the regression would be spurious.  This distinction between cointegrated and 
spurious regression equations provides a criterion for evaluating previously estimated 
specifications of the FSP caseload equation.   
 
 
2.3 Panel Cointegrating Regressions 

 
Versions of the FSP caseload equation will be estimated using annual state level panel 

data from 1980 to 1999.  The obvious advantage of these data is they include both the variation 
of FSP caseloads over time as well as the variation across states.  It is anticipated that the 
additional variation will improve the quality of the estimated FSP caseload equation.  
 

 Let yit denote FSP caseloads and xit denote the vector of policy and economic variables 
in the ith panel in time t.  The panel model that is estimated in this paper is of the form   

 
yit = xit’β+ uit  

 
This specification of the caseload equation assumes that the relationship between the model 
variables is the same or homogeneous across the states.9  Previously studies that have estimated 
                                                 
9 Methods by which standard panel models adjust for individual panel fixed or random effects, such as demeaning or 
detrending, can be incorporated within the homogeneous panel case so that these individual effect do not make the 
panels heterogeneous. 
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the FSP caseload equation using state level panel data have assumed a homogenous relationship 
across states.  In order to faciliate the comparison with these studies, we also assume of a 
homogeneous relationship across the states. The rationale for assuming a homogenous panel is 
quite different, however, depending on whether the data are generated by trend stationary versus 
integrated data processes.   
 

With integrated data, the justification for a homogenous response in each state is based 
on the notion that the FSP is a national program with uniform eligibility requirements in which 
states are subjected to standardized performance criteria and are provided the same (percentage) 
reimbursement for administrative costs. Under these circumstances we might reasonably expect a 
common (homogenous) long-run relationship linking FSP caseloads, economy, and policy 
variables in each of the states.  With integrated data, the assumption of a common long-run 
relationship implies that in any state a given change in a regresssor will cause the same change in 
the long-run FSP caseload level; however, the path of adjustment to the new equilibrium may be 
different for each state.10  On the other hand, for trend stationary data the notion of a 
homogeneous panel implies much stronger assumptions.  Under the assumption of trend 
stationary data, a homogenous panel implies that the short-run (year-to-year) path of adjustment 
of FSP caseloads to their time trend would be the same in each state.   

 
Assume the elements of [yit  xit’] are drawn from unit root non-stationary processes, and 

for any fixed time period t, the [yit  xit’] are identically and independently distributed across 
panels. Let Ωi denote the long-run covariance matrix of {[yit  xit’]} for the ith panel, and note the 
Ωi are distributed iid across panels. Given mild moment and summability conditions, this matrix 
is integrable and therefore can be averaged over panels so that Ω = E(Ωi) denotes the long-run 
average covariance matrix of [yit  xit’]. Elements of Ω include Ωyy (i.e., the long-run average 
moment matrix of yit), Ωxx (i.e., the long-run average moment matrix of xit), and Ωxy(i.e., the 
long-run average cross-moment vector of [yit  xit’]). Then  β = Ωxx

-1Ωxy denotes the long-run 
average regression coefficient associated with the long-run average covariance matrix of [yit  
xit’].    

Given T observations on n panels, Phillips and Moon show that under the null of 
homogeneous panel cointegration the pooled OLS estimator 
 
(9) bn,T = ∑i=1

n ∑ t=1
T [xit xit’ ]-1[xit yit ]   

 
is a√n consistent estimate of β with a limiting normal distribution when n/T→0, and [1 -β] is the 
cointegrating vector.  Phillips and Moon also show that a Fully Modified estimator of the pooled 
relationship, which includes the CCR estimator, is a√nT consistent estimator of β with a limiting 
normal distribution providing n/T→0. 
 

With homogenous panels the results discussed above for single equation cointegration 
carry over to pooled estimation. In particular, with homogeneous panels the pooled estimator (9) 
will converge to a stable long-run relationship when the specification is cointegrated; if the panel 

                                                 
10 With cointegrated data, the path of adjustment is obtained from estimates of the error correction specification 
given in (8).  For a further discussion of assumptions underlying short-run and long- run adjustments in dynamic 
heterogenous panel models see Pesaran, Shin, and Smith (1999).  
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specifications are spurious the pooled estimator diverges. Tests of cointegration, therefore, have 
the same interpretation with the pooled estimator as with the single equation estimator.  This 
means that either the residual based tests or the variable addition test for cointegration discussed 
above could be used to evaluate the completeness of the model specification in the case of a 
homogenous panel.11  
 

                                                 
11 The results of Phillips and Moon are much more powerful than are required for this paper.  In particular they 
show that in the case of heterogeneous panels stable average long-run relationships can be estimated whether or not 
the individual panels are cointegrated or spurious. This means that panel methods allow for the estimation of long-
run relationship even in cases where considerations of the time dimension alone would lead to the regression being 
characterized as spurious.  To see this result write the heterogeneous panel as yit = xit’βi+ uit  with βi random, and 
rewrite this equation as yit = xit’β+ uit

* where uit
* = xit’(βi - β) + uit.  The pooled estimator (7) provide a consistent 

estimator of the parameter vector β even though uit (for all i = 1,…,n) is drawn from a unit-root process because in 
this case the linear combination of integrated variables xit’(βi - β) offsets a diverging variance of {uit}. The result is 
an error process (uit

*) with converging second moments. The estimator  bn,T represents a consistent estimate of β in 
this case because averaging over independent panels decreases the second moments of {uit

*} relative to the second 
moments of the integrated vector {xit}, although the speed of convergence of bn,T  will, in general, be slower than in 
the homogenous panel case.  The pooled estimator in this case is defined by the long-run average variance matrix of 
the panel.  In general, it is not equal to the average of the cointergration coefficients.  
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