EDMP Methodology

Review of Literature

There have been a number of contributors to the development of equilibrium
displacement modeling. The literature is usually traced back to Muth (1964)
who developed the reduced forms for proportional displacements from
equilibrium for a system of equations of supply and demand for a product
dependent on two factors of production and exogenous shifters for each of
the functions. However, in a 1958 article in the Journal of Farm Economics,
Buse (1958) demonstrated the development of what he called “total elas-
ticities”—the reduced-form elasticities of a system of supply and demand
equations for two commodities similar to that later devised by Muth—and
contrasted his “total elasticities” with Marshallian ceteris paribus elasticities.
Buse’s was the first article to use matrix algebra to state and solve his system
of equations. Gardner (1975) employed a formulation identical to Muth’s

to investigate the relationship of retail food prices to farm prices. Sumner
and Wohlgenant (1985) first applied the term “equilibrium displacement
modeling” to Muth’s formulation. Wohlgenant (1993) also extended Muth’s
formulation to multistage industries. Piggott et al. (1995) employed the term
“equilibrium displacement modeling” and formulated their model in matrix
algebra. Davis and Espinoza (1998) extended the Gardner analysis to develop
the full distribution of parameter values rather than only selected values.
Most recently, Sumner (2005) used equilibrium displacement methods to
assess the effects of U.S. commodity polices on world prices and trade.

Samuelson (1952) first demonstrated that the spatial equilibrium problem
could be cast and solved as a linear programming (LP) problem. Takayama
and Judge (1971) demonstrated how quadratic programming could be used

to solve linear supply and demand equations, determining both prices and
quantities endogenously. However, Plessner (1965) and Yaron et al. (1965)
had earlier applied quadratic programming methods to price-endogenous
modeling of the U.S. agricultural sector. Because of the scarcity and cost

of quadratic programming solution algorithms, early MP literature of price-
endogenous models in agricultural economics turned to LP methods. Martin
(1972) incorporated stepped supply and demand functions in LP models.
Martin’s method significantly increased the dimensionality of LP problems
because it required a row and column for each step of the supply and demand
schedules. However, Miller (1963) had earlier published a method of incorpo-
rating sloping demand and supply functions in LP models by selecting among
activities representing the area (price times quantity) under each step of the
functions. Miller’s method required a column for each step but required only a
single convex combination constraint, thus reducing the model dimensionality
significantly from that required by Martin’s formulation.

With the advent of efficient and affordable quadratic programming algo-
rithms in the early 1970s, price-endogenous MP modeling rapidly adopted
quadratic programming methods. Harrington (1973) combined price-endog-
enous quadratic programming modeling and input/output analysis to develop
a forerunner of today’s computable general equilibrium models.
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The literature of positive MP is replete with applications but only two meth-
odological articles. Howitt (1995) explains a pragmatic method of using
dual values of LP model solutions to introduce quadratic terms that assure
that the model’s base period solution matches the base period primal vari-
able levels of the system. An additional advantage of Howitt’s positive MP
is that it eliminates most corner solutions; hence the model adjusts gradually
and proportionally to changes in prices, rather than abruptly shifting from
one corner solution to another. Preckel et al. (2002) extend the Howitt posi-
tive MP methods to calibrate both the primal and dual levels of the system.
They apply their method to calibrating base period prices and quantities in a
system of agricultural sector supply and demand relationships.

The asset-fixity or investment-disinvestment literature—most closely asso-
ciated with Johnson and Hardin (1955), Johnson and Quance (1972), and
Schmid (1997)—is central to specifying the supply response of the model.
The asset-fixity paradigm is predicated upon there being a gap between the
cost of investing in an additional unit of durable capital (its acquisition cost)
and the return from disinvesting in it (its salvage value). When the marginal
value product of a capital item is within this range, it is considered fixed

but allocatable, while outside the range, it is considered variable. Not all
capital is either fixed or variable in a problem; but, different items can be at
their acquisition costs, at their salvage values, or in their fixed but allocat-
able range in between. Under the asset-fixity hypothesis, the length of run is
endogenized separately for each different type of capital. In the 1980s, there
was some controversy over whether the asset-fixity theory was a defensible
viewpoint; but Chavas (1994) rigorously demonstrated Johnson’s underlying
premises under sunk costs and temporal uncertainty.

Theoretical Development

In specifying the theoretical model, we first start with the equilibrium
displacement method, recast it in the positive MP framework, discuss the
modeling of the supply side with the asset-fixity paradigm, then complete
the EDMP model with consistent aggregation/disaggregation of the demand
side. We note certain limitations of each of these building blocks that may be
strongly determinative of model performance.

The equilibrium displacement methodology starts with a standard set of
economic structural equations of supply and demand.

Structural equations:

D, = €e.pe P, + €e.pl P, +¢,W Crop demands 1..n
Sc = €c.pe P, + EcpL P, +¢X Crop supplies l..n
D, = €L pe P, + eppL. P+ eyY Livestock demands 1..m (1)
S, = €L pe P, + &L pL. P, + ¢/ Z Livestock supplies l..m
Q.=Dc =Sc Crops market clearing 1..n
Q =D;=S, Livestock market clearing 1..m
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Where:

D, = Crop demands, D; = Livestock demands

S_ = Crop supplies, S; = Livestock supplies

C

P, = Prices of livestock commodities, 1 . . m
Q. = Quantities of crop commodities, 1 ..n

Q; = Quantities of livestock commodities, 1 .. m

W
X
Y
Z

e.,. = elasticities of demand w.r.t subscripted variables

€.,. = elasticities of supply w.r.t subscripted variables

Substitute displacements from equilibrium: D*, S*, P*, Q*, W* X* Y* and
Z* for respective variables. For example, D* = (D

Substitute market clearing equations into S and D equations.

Rearrange so that Q*s and P*s are functions of exogenous variables: W, X*,

Y*, and Z*.
b J— *
Q*, —ec’pCP . te

b *
QC—SQPCP + €

c c,pL

T k
Q L_eL,pcP ¢ T eL,pL
E * *
Q*L —sL’pCP ot g’pLP

Arrange above equations in matrix form:

n m _ec,pc ec,pL
In Om _SL,pc _SL,pL

0 1 -e -€

n m c.p c.p
0n Im _eL,pc _eL,pL

T *

Then solve forA: A=T"!1BQ=11Q

[1=T"!B are generally termed reduced-form elasticities of endogenous

response.

c,pL

P_ = Prices of crop commodities, 1 .. n

= Exogenous factors influencing crop demands
Exogenous factors influencing crop supplies
= Exogenous factors influencing livestock demands

= Exogenous factors influencing livestock supplies

P* 4+ e W
P* 4+ g X 2)

b k
PL +eyY

Q*, e, 0 0 0 W=

QY = 0 g 0 0 X 3)
P 00 e 0 Y*
P 00 0 e Z*
A = B * Q

%
L +sZZ

scenario ~ Dequilibrium)‘
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Assumptions of Equilibrium Displacement Models

As noted by Piggott et al. (1995), equilibrium displacement models rest on
four key assumptions:

1. Elasticities of endogenous supply and demand relationships are
known and constant.

2. Elasticities of supplies and demands, with respect to exogenous
variables, are known and constant.

3. Technology of production is known and constant.

4. Displacements are restricted to be in the neighborhood of equilibrium.
Limitations of Equilibrium Displacement Models

Those assumptions are also the Achilles heel of equilibrium displacement
models:

1. Adjustment scenarios often entail changing any or all of the above
assumptions, analyzing large displacement from the initial equilibrium,
and/or determining base equilibrium values from indirect data, thus
complicating their application.

2. Expansionary displacements assume that no physical constraints to
expansion exist, for example, no limitations on total cropland or limita-
tions on existing production capacity.

3. Some contractionary displacements can exceed 100 percent of the base
level of the activity. Such solutions are a priori infeasible because they
imply the process in question is operating in reverse.

4. Equilibrium displacement model supply functions are assumed to be
downwardly continuous, whereas a correct specification requires that
each supply function be truncated at the point where its supply price
drops below its average variable cost.

5. Neither expansionary nor contractionary displacements can be guaran-
teed to be on the efficient frontier of the underlying production/demand
functions, but may be either interior points or infeasible points.

6. In the constant elasticity equilibrium displacement formulation, it is
not conceptually possible to calculate a correct monopolistic/monop-
sonistic maximum quasi-rent solution. Quasi-rents change monotoni-
cally upward or downward, with successive restrictions in output,
depending on whether demand is inelastic or elastic.

To overcome these limitations, we adopt an MP implementation of the equi-
librium displacement model.

The EDMP Formulation

We redefine the constant elasticity equilibrium displacement problem to one
of comparing successive equilibria of a system of linear (constant slope)
supply and demand functions with quadratic programming.
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Following Preckel et al. (2002):
Max: Z=Fx-12x Hx. “)
Z is the objective function to be maximized. Z can be either the sum of

consumer plus producer surpluses or the sum of residual quasi-rents,
depending on whether the model is perfectly competitive or monopolistic.

Subject to:
A x = Free Indicator accounts, (4a)
Ayx < 0b Technical constraints, 5)
I x = Calibration constraints, and (6)
X > 0 Non-negativity constraint. @)
Where:
Ay A, = A matrix of Leontief technical requirements of
processes
L; = An identity matrix of calibration constraints,
suspended after calibration
X = A vector of optimized variables (which assure
that all solutions are feasible and efficient)
b = A vector of right hand sides of constraints
c = A vector of calibration targets to reproduce base
equilibrium, suspended after calibration
F = A vector of intercepts of supply and demand
processes
H = Hessian matrix of marginal adjustment costs and

demand slopes, assumed to be positive semidefi-
nite for maximization.

Equation 4a is necessary because the value of the objective function, equa-
tion 4, is confounded by perturbations necessary to calibrate the model to

the base period prices and quantities. Similarly, to model some agricultural
policies, it may be necessary to define processes differently from observed
supply and demand relationships. Any such changes need to be backed out of
the model solutions to reflect true supply and demand prices and quantities.

Equation 6, which contains the quantity targets of the equilibrium solution, is
enforced only in the initial calibration solutions. When the model is calibrated
to the desired accuracy, its optimal solution will return exactly the quantities
specified in equation 6, without any quantity constraints. After that, equation
6 is suspended to allow the model to adjust all prices and quantities simulta-
neously in response to changes in the scenario. Thus, differences of scenario
solutions from the base solution enforced in equation 6 are equilibrium
displacements under the assumption of constant slope relationships rather
than constant elasticity relationships. The constant slope formulation inherent
in EDMP models has the advantage of being theoretically consistent with
monopolistic maximization of quasi-rents, in contrast to constant elasticity
equilibrium displacement models.
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Equivalence of EDMP Formulation to a Profit Function Formulation

Monopolistic Firm and Competitive
Industry Cases

Let F(x) be a general multi-output multi-input profit
function, with x containing both inputs (-) and outputs
(+) and with prices related to quantities, subject to equa-
tions 5 and 7.

A second order Taylor series expansion of F(x) in the
neighborhood of its maximum (x*) is:

F(x) = F(x*) + F'(x*)(x-x*) + F"(x*)(x-x*)?> + R,
1! 2!

®)

where F' and F" are the first and second derivatives of
F(x*) and R represents the higher order nonlinearities
of F(x).

By definition, F"(x*) is the Hessian, H(x*).

Assuming the base situation to be in equilibrium (a
maximum), then F'(x*) = 0. Rearranging terms to matrix
notation, the Taylor series expansion becomes:
F(x) = F(x*) + 1/2(x-x*)' H (x-x*), C))
where the Hessian matrix is assumed to be negative
semidefinite. Changing the sign in equation 9 allows
the Hessian to be specified as positive semidefinite.
From equation 9, it is clear that, in the monopolistic
case, the equilibrium displacement maximand, Z, once
calibrated, is identical to the monopolistic firm’s profit
function.

The model can be solved either monopolistically (that
is, for a firm with market power) by equating marginal
factor costs to marginal revenues or perfectly competi-
tively by maximizing the sum of producers’ plus
consumers’ surpluses (that is, for a perfectly competi-
tive firm or an industry). Both monopolistic and
perfectly competitive behavior can be combined for
different activities within a single model. (For applica-
tions of EDMP to mixed competitive and monopolistic
problems, see Jefferson-Moore and Harrington (2006)
and Harrington and Jefferson-Moore (2007).)

Figure 1 illustrates the EDMP perfectly competitive
supply and demand equilibrium for a commodity. The
gradient is the perfectly competitive market price, and
residual rents are identically equal to zero. Figure 2 illus-
trates monopolistic/monopsonistic equilibrium, found
by equating marginal revenue with marginal factor cost.
Factor and product prices are found on the original factor
supply and product demand functions. Residual rents,
shown as the shaded area, are at a maximum.

Figure 1
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